Invariants of some compactified Picard modular surfaces and applications
نویسنده
چکیده
The paper investigates invariants of compactified Picard modular surfaces by principal congruence subgroups of Picard modular groups. The applications to the surface classification and modular forms are also discussed.
منابع مشابه
Dimension Formulas for Automorphic Forms of Coabelian Hyperbolic Type
There are infinitely many hyperbolic transforms of complex abelian surfaces. The corresponding universal covers change from the complex plane to the unit ball, from flat to hyperbolic metrics. Looking back to Jacobi’s periodic functions we were able to construct 2-dimensional abelian functions transformable to automorphic forms on the ball. In this article we prove explicit dimension formulas f...
متن کاملApplications of some Graph Operations in Computing some Invariants of Chemical Graphs
In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.
متن کاملCusps of Picard modular surfaces
We determine the number of cusps of minimal Picard modular surfaces. The proof also counts cusps of other Picard modular surfaces of arithmetic interest. Consequently, for each N > 0 there are finitely many commensurability classes of nonuniform arithmetic lattices in SU(2, 1) that contain an N -cusped surface. We also discuss a higher-rank analogue.
متن کاملDifferential Equations Satisfied by Modular Forms and K3 Surfaces
We study differential equations satisfied by modular forms of two variables associated to Γ1×Γ2, where Γi (i = 1, 2) are genus zero subgroups of SL2(R) commensurable with SL2(Z), e.g., Γ0(N) or Γ0(N)∗ for some N . In some examples, these differential equations are realized as the Picard–Fuchs differential equations of families of K3 surfaces with large Picard numbers, e.g., 19, 18, 17, 16. Our ...
متن کاملDifferential Equations Satisfied by Bi-modular Forms and K3 Surfaces
We study differential equations satisfied by bi-modular forms associated to genus zero subgroups of SL2(R) of the form Γ0(N) or Γ0(N)∗. In some examples, these differential equations are realized as the Picard–Fuchs differential equations of families of K3 surfaces with large Picard numbers, e.g., 19, 18, 17, 16. Our method rediscovers some of the Lian–Yau examples of “modular relations” involv...
متن کامل